Цитокиновый шторм
Дэвид Фейгенбаум и Карл Юне
Пандемия тяжелого острого респираторного синдрома, вызванная новым коронавирусом (SARS-CoV-2), напомнила нам как о ключевой роли эффективного иммунного ответа организма хозяина, так и о разрушительном эффекте иммунной дисрегуляции. В этом году исполняется 10 лет с момента первого описания цитокинового шторма, который развился после Т-клеточной терапии с химерными рецепторами (CAR) [1], и 27 лет с тех пор, как этот термин впервые был использован в литературе для описания реакции «трансплантат против хозяина» после трансплантации аллогенных гемопоэтических стволовых клеток [2]. Термин «синдром высвобождения цитокинов» был создан для описания подобного синдрома после инфузии муромонаба-CD3 (OKT3) [3]. Цитокиновый шторм и синдром высвобождения цитокинов представляют собой опасные для жизни системные воспалительные синдромы, проявляющиеся в виде повышения уровня циркулирующих цитокинов и гиперактивации иммунных клеток, которые могут быть вызваны самыми разнообразными видами вмешательств, патогенами, раком, аутоиммунными состояниями и моногенными нарушениями.
▶ Читать по теме: Нарушение распознавания вирусной РНК связано с развитием тяжелой формы COVID-19
Исторически цитокиновый шторм назывался «гриппоподобным синдромом», возникающим в результате системных инфекций, таких как сепсис, и после иммунотерапии — в частности, терапи токсинами Коли [4]. Патогенетически в результате инфекции Yersinia pestis (возбудитель чумы), повлекшей за собой возникновение масштабных эпидемий (таких как, например, «Черная смерть»), происходила активация альвеолярных макрофагов, результатом которой становилась чрезмерная продукция огромного количества цитокинов, что приводило к цитокиновому шторму [5]. Предполагалось, что чрезмерный иммунный ответ способствовал высокой летальности пандемии гриппа 1918–1919 годов (т.н. «испанка»). Фактически реконструированный вирус H1N1, выделенный во время пандемии 1918 года, вызывал мощное легочное воспаление у мышей по сравнению с обычными эталонными штаммами вируса, вызывающего грипп A [6]. Признание того, что именно иммунный ответ на патоген, а не сам патоген, может приводить к полиорганной дисфункции и что аналогичные синдромы цитокинового шторма могут возникать и без явной инфекции, послужило поводом к исследованию иммуномодуляторов и разработке терапии, направленной на цитокины. Одним из первых методов контроля цитокинового шторма было моноклональное антитело против рецептора интерлейкина-6 — тоцилизумаб, которое было создано для лечения болезни Каслмана (ангиофолликулярная гиперплазия лимфатических узлов) еще в 1990-х годах. Оказалось, что множество других заболеваний сопровождается цитокиновым штормом — в том числе сепсис, первичный и вторичный гемофагоцитарный лимфогистиоцитоз, аутовоспалительные заболевания и даже коронавирусная инфекция 2019 года (COVID-19).
На сегодняшний день не существует единого определения цитокинового шторма или синдрома высвобождения цитокинов, как и нет единого мнения о том, чем эти состояния отличаются от соответствующей воспалительной реакции. Определение Национального института исследований рака, основанное на Общих терминологических критериях нежелательных явлений (СТСАЕ), является слишком обширным, поскольку критерии воспалительного синдрома также могут быть применены к другим физиологическим состояниям. Определение, разработанное Американским обществом трансплантологии и клеточной терапии, основано на критериях, которые слишком сфокусированы на ятрогенных причинах цитокинового шторма [7]. Несмотря на то, что цитокиновый шторм несложно идентифицировать при состояниях с повышенным уровнем цитокинов в отсутствие патогенов, грань между нормальным и нерегулируемым ответом на тяжелую инфекцию крайне размыта — особенно с учетом того, что определенные цитокины могут быть как полезными для контроля инфекции, так и вредными для организма хозяина. Взаимосвязь этих медиаторов воспаления еще больше усложняет установление различий между нормальным и нерегулируемым иммунным ответом.
Для клинициста крайне важно вовремя распознать цитокиновый шторм, поскольку это состояние имеет прогностическое и терапевтическое значение. В данном обзоре предлагается единое определение цитокинового шторма, проводится обсуждение патофизиологических особенностей, клинических проявлений и лечения синдрома, а также рассмотрены ятрогенные, вызванные патогенами, индуцированные неоплазией и другие причины возникновения цитокинового шторма. Цель данного обзора — предоставить врачам концептуальную основу, унифицированное определение и необходимые инструменты для определения стадии, оценки и эффективной терапии цитокинового шторма.
Клинические особенности и лабораторные показатели
Цитокиновый шторм — это общий термин, охватывающий ряд нарушений иммунной регуляции, характеризующихся конституциональными симптомами, системным воспалением и полиорганной дисфункцией, которые при отсутствии надлежащего лечения могут привести к полиорганной недостаточности (Рис. 1). Начало и продолжительность цитокинового шторма варьируются в зависимости от причины и применяемого лечения [7]. Несмотря на то, что провоцирующие факторы могут отличаться, клинические проявления цитокинового шторма на поздних стадиях сходятся и часто перекрываются. Почти у всех пациентов с цитокиновым штормом наблюдается лихорадка, вплоть до гектической температуры в тяжелых случаях [8]. Кроме того, у пациентов могут быть утомляемость, снижение аппетита вплоть до анорексии, головная боль, различная сыпь, диарея, артралгия, миалгия, а также нейропсихиатрические проявления. Эти симптомы могут быть связаны как непосредственно с повреждением тканей, вызванным цитокинами, так и с физиологическими изменениями в острой фазе, или же могут возникать в результате других процессов, опосредованных действием иммунных клеток. Такое состояние может быстро прогрессировать до диссеминированного внутрисосудистого свертывания крови с окклюзией сосудов или массивными кровотечениями, одышкой, гипоксемией, гипотонией, гемостатическим дисбалансом, вазодилататорным шоком и может закончиться смертью пациента. Многие пациенты имеют респираторные симптомы, в том числе кашель и тахипноэ, которые также могут прогрессировать до острого респираторного дистресс-синдрома (ОРДС) с гипоксемией, что может потребовать искусственной вентиляции легких. Сочетание гипервоспаления, коагулопатии и тромбоцитопении подвергает пациентов с цитокиновым штормом высокому риску спонтанного кровотечения.
ОРДС обозначает острый респираторный дистресс-синдром, СРБ — С-реактивный белок, и VEGF — фактор роста эндотелия.
При тяжелом течении цитокинового шторма возможно развитие почечной и печеночной недостаточности, холестаза, а также связанной со стрессом или такоцубо-подобной кардиомиопатии [9]. Сочетание почечной дисфункции, гибели эндотелиальных клеток и острой фазы гипоальбуминемии может привести к синдрому системной повышенной проницаемости капилляров и анасарке — изменениям, аналогичным тем, которые наблюдаются у больных онкологическими заболеавниями, которые получают высокие дозы интерлейкина-2 [10]. Неврологическая токсичность, связанная с Т-клеточной иммунотерапией, называется синдромом нейротоксичности, ассоциированным с эффекторными иммунными клетками, или энцефалопатией, ассоциированной с синдромом высвобождения цитокинов [7]. Неврологические токсические эффекты часто являются отсроченными и развиваются через несколько дней после начала цитокинового шторма.
Результаты лабораторных исследований цитокинового шторма различны и зависят от основной причины. Неспецифические маркеры воспаления, такие как С-реактивный белок (СРБ), повышены повсеместно и коррелируют с тяжестью [11]. У многих пациентов отмечается гипертриглицеридемия и различные отклонения в анализе крови, такие как лейкоцитоз или лейкопения, анемия, тромбоцитопения и повышенные уровни ферритина и D-димера. Изменения в количестве циркулирующих клеток, скорее всего, обусловлены сложным взаимодействием между индуцированными цитокинами изменениями в производстве и мобилизации клеток из костного мозга, их иммуноопосредованным разрушением и вызванной хемокинами миграцией. Нередко обнаруживается заметное повышение уровней провоспалительных цитокинов в сыворотке крови, таких как интерферон-γ (или CXCL9 и CXCL10 — хемокины, индуцированные интерфероном-γ), интерлейкин-6, интерлейкин-10 и растворимый рецептор интерлейкина-2 альфа, маркер активации Т-клеток. Резко повышенные уровни интерлейкина-6 в сыворотке обнаруживаются как при цитокиновом шторме, вызванном CAR-Т-клеточной терапией, так и при некоторых других вариантах цитокинового шторма [8].
Подход к оценке пациентов с цитокиновым штормом должен достигать следующих трех основных целей: определение основного заболевания (и исключение расстройств, которые могут имитировать цитокиновый шторм), определение степени тяжести и определение клинической и терапевтической тактики. Полное обследование на наличие инфекции, а также лабораторная оценка функции почек и печени должны проводиться в каждом случае подозрения на цитокиновый шторм. Необходимо оценить уровень биомаркеров острой фазы воспаления, таких как СРБ и ферритин, и провести клинический анализ крови, поскольку эти показатели коррелируют с активностью заболевания. Измерение газового состава артериальной крови следует проводить в том случае, если это необходимо для оценки респираторного статуса. Профилирование цитокинов может быть полезно при определении тенденции от исходных значений, хотя эти исследования не всегда доступны, чтобы их можно было включить как часть немедленного обследования или для принятия решений о назначении терапии.
Установление причины, лежащей в основе цитокинового шторма, может быть сложной задачей. Цитокиновый шторм не является диагнозом исключения и может включать в себя множество симптомов. Например, у пациентов может быть как сепсис, так и цитокиновый шторм. Однако важно различать цитокиновый шторм в результате ятрогенного воздействия, такого как терапия CAR-Т-клетками, и цитокиновый шторм, возникший из-за системной инфекции, поскольку иммуносупрессивные методы лечения могут быть вредны при использовании у пациентов с сепсисом. К сожалению, трудно отличить цитокиновый шторм, вызванный сепсисом, от цитокинового шторма, вызванного терапией CAR-Т-клетками, только на основании клинических признаков. Уровни сывороточных цитокинов — в первую очередь, интерферона-γ — часто сильнее повышены у пациентов с цитокиновым штормом вследствие терапии CAR-Т-клетками, чем у пациентов с цитокиновым штормом, вызванным сепсисом, которые часто демонстрируют более высокие уровни циркулирующего интерлейкина-1β, прокальцитонина и маркеров эндотелиального повреждения [12]. Таким образом, комбинации анализов для исключения инфекции и определения уровней сывороточных цитокинов могут помочь определить истинную причину цитокинового шторма в конкретном случае. Однако как терапия CAR-Т-клетками и другие неинфекционные причины могут возникать при инфекциях, так и инфекции могут развиваться во время курса терапии, поэтому оправданным является постоянный мониторинг инфекций. Заболевания, которые следует исключить при рассмотрении цитокинового шторма, включают анафилаксию и физиологические реакции на микробные инфекции.
Системы оценки, используемые для прогнозирования и определения тяжести цитокинового шторма, различаются в зависимости от его причины. Биомаркеры сыворотки крови, включая гликопротеин-130 (gp130), интерферон-γ и антагонист рецептора интерлейкина-1 (IL1RA), могут использоваться для прогнозирования тяжести цитокинового шторма, вызванного терапией CAR-Т-клетками [13], [13] с отдельной оценкой по шкале, используемой для оценки текущей степени тяжести [7]. Оценки HScore и MS используются для классификации цитокинового шторма, ассоциированного с гемофагоцитарным лимфогистиоцитозом, а HLH-2004 помогает определить тактику лечения. Для оценки цитокинового шторма, вызванного другими причинами, используется раздел CTCAE о нарушениях иммунной системы.
Патофизиологические особенности цитокинового шторма
Воспаление представляет собой комплекс биологических механизмов, которые развились в многоклеточных организмах, чтобы сдерживать инвазивные патогены и устранять травмы путем активации врожденного и адаптивного иммунного ответа. Предполагается, что иммунная система распознает чужеродные агенты, отреагирует пропорционально опасности патогенов, а затем вернет организм к гомеостазу. Этот процесс требует баланса между необходимой и достаточной продукцией цитокинов для устранения патогена — и вместе с тем предотвращением гипервоспалительного ответа, при котором переизбыток цитокинов вызывает клинически значимые побочные нарушения. Цитокины играют ключевую роль в координации эффекторных клеток и обеспечении регуляторных сигналов, которые направляют, усиливают или разрешают иммунный ответ. Цитокины имеют короткий период полураспада, что обычно препятствует их действию за пределами лимфоидной ткани и локальных участков воспаления. Несмотря на то, что устойчивое производство цитокинов, которое приводит к повышению их уровней в крови, обычно считается патологическим состоянием, оно может быть необходимо для надлежащего контроля некоторых распространенных инфекций. При повышенных уровнях цитокины могут оказывать системное действие и наносить вред жизненно важным органам.
Гиперактивация иммунной системы при цитокиновом шторме может происходить в результате неадекватного запуска или восприятия организмом опасности инфекционного агента, с ответом, инициированным в отсутствие патогена (например, при генетических нарушениях, включающих несоответствующую активацию инфламмасом или идиопатическую мультицентрическую болезнь Каслмана); несоответствующей или неэффективной амплитуде такого ответа, включая обширную активацию эффекторных иммунных клеток (например, при цитокиновом шторме вследствие терапии CAR-Т-клетками), чрезмерную активность патогенов (например, при сепсисе) или неконтролируемые инфекции и длительную активацию иммунной системы (например, при гемофагоцитарном лимфогистиоцитозе, связанном с вирусом Эпштейна — Барр); или неспособность разрешить иммунный ответ и вернуться к гомеостазу (например, при первичном гемофагоцитарном лимфогистиоцитозе) (Рис. 2). В каждом из вышеописанных состояний происходит сбой механизма отрицательной обратной связи, который предназначен для предотвращения гипервоспаления и сверхпроизводства провоспалительных цитокинов и растворимых медиаторов воспаления. Избыточная продукция цитокинов приводит к гипервоспалению с развитием полиорганной недостаточности. Типы регулирующих клеток, рецепторы-ловушки для провоспалительных цитокинов, такие как IL1RA, и противовоспалительные цитокины, такие как интерлейкин-10, важны для противодействия популяциям воспалительных клеток и предотвращения гиперактивности иммунной системы.
COVID-19 обозначает коронавирусную болезнь 2019 года, антагонист рецептора интерлейкина-1 — IL1RA; индуцируемый интерфероном белок 10 — IP-10; преобразователь сигнала киназы и активатор транскрипции 3 — JAK-STAT3; митоген-активированная протеинкиназа — MAPK; хемотаксический белок моноцитов-1 — MCP-1; воспалительный белок макрофагов 1α — MIP-1α; мишень рапамицина млекопитающих — mTOR; ядерный фактор κB — NF-κB; фактор некроза опухоли — TNF и регуляторные T-клетки — Tregs, ЦШ — цитокиновый шторм.
Учитывая отсутствие единого определения цитокинового шторма [14] и разногласия по поводу различия между цитокиновым штормом и физиологической воспалительной реакцией, мы предлагаем следующие три критерия для определения цитокинового шторма: повышенные уровни циркулирующих цитокинов, наличие острых системных воспалительных симптомов и либо вторичная органная дисфункция (часто почечная, печеночная или легочная) вследствие воспаления большей интенсивности, чем та, которая может быть связана с нормальной реакцией на патоген (если патоген присутствует), либо другая дисфункция органа, вызванная цитокинами (в отсутствие патогена). Улучшение состояния с помощью нейтрализации цитокинов или применения противовоспалительных лекарственных средств дополнительно подтверждает патологическую роль избыточных цитокинов и позволяет классифицироватьует состояние как цитокиновый шторм. Однако отсутствие ответа на лечение не обязательно исключает цитокиновый шторм, так как определенную роль, вероятно, могут играть основные заболевания, какой-либо другой цитокин может являться драйвером болезни или же лечение может оказаться неудачным.
Таким образом, мы выяснили, что цитокиновый шторм включает в себя иммунный ответ, вызывающий побочные эффекты, которые могут превышать непосредственную пользу этого иммунного ответа. Так, интенсивная воспалительная реакция на большое количество патогенов может быть эффективным приемом в борьбе с инфекцией, если не происходит чрезмерной дисфункции вторичных органов, тогда как аналогичные высокие уровни цитокинов в связи с развитием онкозаболеваний или идиопатической мультицентрической болезни Каслмана можно было бы рассматривать как цитокиновый шторм, потому как в каскаде этих реакций не задействован патоген, требующий иммунного ответа, и пациенты отмечают улучшение состояния при нейтрализации цитокинов и другими противовоспалительными агентами. Уровни циркулирующих цитокинов может быть сложно измерить, поскольку они имеют короткий период полураспада. Кроме того, они могут не совсем точно отражать местное содержание цитокинов в тканях, а измерения во всем организме провести сравнительно непросто. Авторы данного обзора не предлагают конкретный порог повышения уровней цитокинов выше нормального диапазона, не рекомендуют конкретные панели цитокинов и не перечисляют конкретные цитокины, уровни которых должны быть повышены, ввиду отсутствия доступных доказательств. Однако они считают, что это важная область для будущих исследований, и систематическая оценка многопрофильным консорциумом может быть крайне полезна для клиницистов.
Типы клеток, участвующих в цитокиновом шторме
Клетки врожденной иммунной системы — первая линия защиты от патогенов. Нейтрофилы, моноциты и макрофаги распознают инфекционные агенты, продуцируют цитокины и поглощают патогены и клетки путем фагоцитоза. Есть и другие типы клеток врожденного иммунитета, такие как дендритные клетки, гамма-дельта Т-клетки и естественные киллеры (NK) [15]. Клетки врожденной иммунной системы используют рецепторы распознавания тех образов (паттернов), которые не являются специфическими для какого-либо конкретного антигена, для узнавания и реагирования на широкий спектр микробных агентов, продуцируя цитокины, которые, в свою очередь, активируют клетки адаптивной иммунной системы.
▶ Читать по теме: Натуральные киллеры, вероятно, помогают контролировать COVID-19
Клетками врожденного иммунитета, которые чаще всего участвуют в патогенезе цитокинового шторма, являются нейтрофилы, макрофаги и NK-клетки. Нейтрофилы могут активировать внеклеточные ловушки — сеть фибрилл, которые способствуют образованию тромбов и усиливают выработку цитокинов во время цитокинового шторма. Макрофаги, которые являются резидентными клетками ткани и часто происходят из циркулирующих моноцитов, не делятся, но выполняют разнообразные функции —, от удаления стареющих клеток путем фагоцитоза до репарации тканей и иммунорегуляции и презентации антигена. Во многих формах цитокинового шторма макрофаги активируются и секретируют чрезмерное количество цитокинов, что в итоге вызывает серьезное повреждение тканей, которое может привести к органной недостаточности. Гемофагоцитарные макрофаги часто можно наблюдать в биоптатах костного мозга пациентов с цитокиновым штормом. Интерферон-γ может вызывать гемофагоцитоз макрофагами, что также может способствовать развитию цитопений, обычно наблюдаемых у пациентов с цитокиновым штормом [16]. Цитолитическая функция NK-клеток при некоторых формах цитокинового шторма может заметно снижаться, что приводит к длительной антигенной стимуляции и затруднениям при разрешении воспаления [17]. Избыток интерлейкина-6 может опосредовать нарушение функции NK-клеток за счет снижения продукции перфорина и гранзима.
Адаптивная иммунная система состоит из В-клеток и Т-клеток. Т-клетки дифференцируются в ряд подгруппмножеств с различными функциями в качестве эффекторных клеток, потенциально вовлеченных в цитокиновый шторм (Рис. 3). Хелперные Т-клетки 1 типа (Th1) и цитотоксические Т-лимфоциты (CTL) в первую очередь несут ответственность за защиту хозяина от вирусных инфекций. Клетки Th1 регулируют вовлечение в реакции иммунного ответа макрофагов, тогда как хелперные T-клетки 2 типа (Th2) рекрутируют эозинофилы и базофилы, хелперные T-клетки 9 типа (Th9) активируют тучные клетки, а хелперные T-клетки 17 типа (Th17) рекрутируют нейтрофилы [18]. Во время цитокинового шторма часто возникает усиленная воспалительная реакция именно с участием клеток Th1. Клетки Th1 продуцируют большие количества интерферона-γ, вызывают реакции гиперчувствительности замедленного типа, активируют макрофаги и необходимы для защиты от внутриклеточных патогенов [19]. Ятрогенные причины цитокинового шторма, включающие чрезмерную активацию Т-клеток, такие как терапия CAR-Т-клетками и антителами к CD28, как раз указывают на способность активированных Т-клеток инициировать цитокиновый шторм. Нарушение опосредованного гранулами уничтожения инфицированных или опухолевых клеток с помощью CTL является ключевым аспектом развития некоторых форм цитокинового шторма [20]. Данные, полученные на мышиных моделях и пациентах с цитокиновым штормом показывают, что неспособность CTL эффективно уничтожать клетки приводит к пролонгированной активации Т-лимфоцитов, запускающей каскад воспалительного повреждения ткани [21–23]. Клетки Th17 играют важную роль в защите организма хозяина, особенно в противогрибковых реакциях, а аномальная функция клеток Th17 может приводить к возникновению аутоиммунитета [24]. Экспериментальная модель синдрома активации макрофагов (форма вторичного гемофагоцитарного лимфогистиоцитоза) свидетельствует о том, что клетки Th17 могут быть драйверами не зависящего от интерферона-γ цитокинового шторма [25].
В-клетки нечасто связаны с патогенезом цитокинового шторма. Однако эффективность истощения пула В-клеток при терапии некоторых проявлений цитокинового шторма, таких как, например, мультицентрическая болезнь Каслмана, ассоциированная с вирусом герпеса 8 типа (HHV-8), позволяет предположить, что данный тип клеток способен инициировать или распространять цитокиновый шторм, особенно при вирусной инфекции.
Цитокины
Как отмечалось выше, признание цитокинового шторма как нозологической единицы произошло относительно недавно. Появление технологий молекулярного клонирования привело к открытию целого ряда участвующих в нем цитокинов и хемокинов (Таб. 1). Подтверждение того, что различные биологические субстанции могут вызывать цитокиновый шторм (Таб. 2), также способствовало повышению интереса к данному явлению. Применение рекомбинантных цитокинов (например, интерлейкина-1, 6, -12, -18, фактора некроза опухоли [TNF] и интерферона-γ) на животных моделях и их введение в схему терапии онкологических заболеваний у людей приводило к серьезным токсическим эффектам или летальнму исходу, что согласуется с центральной ролью цитокинов как медиаторов гипервоспаления при цитокиновом шторме [27–29]. И наоборот, уменьшение симптомов и улучшение функции органов за счет нейтрализации специфических цитокинов моноклональными антителами также показывает, что чрезмерные уровни определенных цитокинов играют решающую роль в ряде проявлений цитокинового шторма.
Таблица 1 | Роль растворимых медиаторов в реакциях цитокинового шторма
Таблица 2 | Клинические причины цитокинового шторма, патологические факторы и терапевтические подходы
В процессы цитокинового шторма вовлечена сложная сеть различных взаимосвязанных типов клеток, сигнальных путей и цитокинов. Интерферон-γ, интерлейкины-1, -6, -18 и TNF являются ключевыми цитокинами, которые часто демонстрируют повышенные уровни при цитокиновом шторме и, как полагают исследователи, играют в этом процессе центральную иммунопатологическую роль. Характер и степень повышения продукции цитокинов варьируется в зависимости от таких факторов, как микробиом, генетические особенности и лежащие в основе цитокинового шторма заболевания [30]. Специфические иммунные клетки, которые секретируют различные цитокины, полностью не изучены и, скорее всего, их состав различается в зависимости от характера проявлений цитокинового шторма. Интерферон-γ в первую очередь секретируется активированными Т- и NK-клетками и является мощным активатором макрофагов. Клинически интерферон-γ вызывает лихорадку, озноб, головную боль, головокружение и усталость [31]. Эмапалумаб, моноклональное антитело, связывающее интерферон-γ, недавно было одобрено для лечения цитокинового шторма у пациентов с первичным гемофагоцитарным лимфогистиоцитозом [32]. Этот агент также может быть полезен и при других проявлениях цитокинового шторма, таких как синдром активации макрофагов или цитокиновый шторм, связанный с терапией CAR-Т-клетками, хотя в последнем случае он может уменьшать свой противоопухолевый эффект.
Лихорадка, клинический признак цитокинового шторма, может быть вызвана интерлейкином-1, -6 или TNF через различные механизмы. Интерлейкин-1 кодируется двумя генами (IL1A и IL1B), оба из которых связываются с одним и тем же рецептором интерлейкина-1, активируя каскад внутриклеточных сигнальных путей, включая ядерный фактор κB (NF-κB). Анакинра (торговое наименование — «Кинерет») — антагонист интерлейкин-1-рецепторов — эффективен и как самостоятельный агент, и в комбинации с другими препаратами для лечения некоторых форм цитокинового шторма [33, 34].
Уровни интерлейкина-6, важного медиатора острого воспалительного ответа и регулятора патофизиологических особенностей цитокинового шторма, сильно повышены при различных иммунопатологических нарушениях [35, 36], а также в моделях цитокинового шторма на мышах [37]. Как тоцилизумаб, моноклональное антитело, направленное на рецептор интерлейкина-6 (интерлейкин-6R), так и силтуксимаб, который напрямую нейтрализует интерлейкин-6, показали свою эффективность при ряде заболеваний, связанных с цитокиновым штормом, включая гемофагоцитарный лимфогистиоцитоз, идиопатическую мультицентрическую болезнь Каслмана и цитокиновый шторм, индуцированный CAR-Т-клетками [38].
Интерлейкин-6 представляет собой один из наиболее сложных цитокинов, поскольку он действует как на иммунные, так и на неиммунные клетки во многих органах. Он может передавать сигналы двумя основными путями, которые называются классическими цис-сигналами или транс-сигналами [38]. Ассоциированный с мембраной рецептор интерлейкина-6 не обладает внутриклеточными сигнальными доменами и вместо этого передает сигналы посредством взаимодействия с мембраносвязанным белком gp130. При цис-передаче сигналов растворимый интерлейкин-6 связывается со своим трансмембранным рецептором интерлейкина-6R, образуя комплекс интерлейкина-6 — и его рецептор интерлейкниа-6, который связывается с gp130. gp130, в свою очередь, запускает передачу сигналов через свой внутриклеточный домен.
Нижестоящая передача сигнала опосредуется киназами JAK (Janus kinases) и STAT3 (signal transducer and activator of transcription 3), а также через пути Akt — mTOR (mammalian target of rapamycin) и MAPK — ERK (mitogen-activated protein kinase — extracellular signal-regulated kinase). Связанный с мембраной gp130 экспрессируется повсеместно, тогда как экспрессия трансмембранного рецептора интерлейкина-6 ограничена в основном иммунными клетками. Активация цис-сигналов приводит к плейотропным эффектам со стороны иммунной системы, что может способствовать цитокиновому шторму [38]. При высоких уровнях циркулирующего интерлейкина-6, которые могут наблюдаться при цитокиновом шторме, передача транс-сигналов происходит за счет связывания интерлейкина-6 с растворимой формой его рецептора. В результате комплекс с димером gp130 может потенциально образовываться на поверхностях любых клеток. Возникающий в результате путь передачи сигналов интерлейкин-6 — рецептор интерлейкина-6 — gp130 — JAK — STAT3 затем активируется в клетках, которые не экспрессируют трансмембранный рецептор интерлейкина-6 — таких как, например, эндотелиоциты. Это приводит к системному гипервоспалению, включающему секрецию моноцитарного хемоаттрактантного белка 1 (MCP-1), интерлейкина-8 и дополнительного интерлейкина-6, а также к увеличению продукции фактора роста эндотелия (VEGF) и снижению экспрессии E-кадгерина на эндотелиальных клетках, что способствуют повышенной проницаемости сосудов, гипотензии и легочной дисфункции [38].
TNF — это мощный многофункциональный провоспалительный цитокин, который принадлежит к суперсемейству TNF—TNF-рецепторов. Помимо индукции лихорадки, усиления системного воспаления и активации антимикробных реакций, с чем справляется, например, интерлейкин-6, TNF может вызывать апоптоз клеток и регулировать иммунный ответ. TNF и другие цитокины в суперсемействе TNF—TNF-рецепторов являются мощными индукторами NF-κB, что приводит к экспрессии множества провоспалительных генов. В моделях токсического шока у мышей TNF является драйвером цитокинового шторма, управляемого суперантигеном [39]. Эффективность анти-TNF-терапии в определенных вариантах цитокинового шторма, вызванного аутовоспалением, указывает на их потенциальную роль в его лечении, но известные ограничения и опасности анти-TNF-терапии у пациентов с сепсисом говорят о необходимости дополнительных исследований.
Интерлейкин-18 является членом большого семейства интерлейкинов-1 [40], которое, по данным недавних исследований, связано с заболеваниями, сопровождающимися цитокиновым штормом. Интерлейкин-18 и интерлейкин-1β активируются из своих предшественников с помощью инфламмасом. Инфламмасома — это мультимолекулярный цитозольный сенсор, который выявляет патогенные микроорганизмы и стерильные стрессоры и активирует каспазу-1 в процессе пироптоза, что, в свою очередь, превращает неактивные формы интерлейкина-1β и интерлейкина-18 в активные [41, 42]. Макрофаги и дендритные клетки являются основными источниками биоактивного интерлейкина-18, который обладает множеством провоспалительных эффектов. Наиболее важно то, что он действует синергично с интерлейкином-12 или интерлейкином-15, что стимулирует секрецию интерферона-γ Т-клетками и NK-клетками и, таким образом, способствует воспалительному ответу Th1-типа. Рецептор интерлейкина-18 конститутивно экспрессируется на NK-клетках и индуцируется при активации в большинстве T-клеток. Интерлейкин-1β и интерлейкин-18 также являются мощными индукторами секреции интерлейкина-6 макрофагами [43].
У пациентов с цитокиновым штормом обнаруживается высокий уровень интерлейкина-18 в сыворотке крови именно из-за синдрома активации макрофагов [44], а интерлейкин-18 является биомаркером тяжести цитокинового шторма, уровень которого коррелирует с гиперферритинемией, повышенным уровнем аминотрансфераз и обострением заболевания [45]. Провоспалительные эффекты интерлейкина-18 обычно контролируются белком, связывающим интерлейкин-18 (IL18BP), который предотвращает взаимодейстие интерлейкина-18 с его рецептором [46]. Отношение свободного интерлейкина-18 к связанным комплексам интерлейкин-18 — IL18BP в сыворотке крови является важным показателем тяжести синдрома активации макрофагов [44, 47]. Тадекиниг-альфа представляет собой рекомбинантный IL18BP, который в настоящее время исследуется для лечения гипервоспаления.
Хемокины — это класс цитокинов, которые участвуют в регуляции различных функциий иммунных клеток, включая рекрутирование и миграцию лейкоцитов. Нарушение регуляции миграции лейкоцитов во время воспаления может играть роль в развитии гипервоспаления. Многочисленные регуляторные цитокины, такие как интерлейкин-10, и естественные антагонисты цитокинов, такие как IL1RA, служат в качестве буферов для нивелирования системных эффектов, не соответствующих своим основным целям. Интерлейкин-10 ингибирует продукцию TNF, интерлейкина-1, -6 и -12 и подавляет интенсивность презентации антигена. Кроме того, у мышей, лишенных интерлейкина-10, инфекция приводит к цитокиновому шторму [48]. Несмотря на то, что уровень интерлейкина-10 и IL1RA при цитокиновом шторме часто повышается, это открытие, скорее всего, отражает вторичный, хотя и недостаточный, контррегуляторный ответ иммунной системы на действие провоспалительных цитокинов. Анакинра — лекарственное средство, имитирующее эндогенные иммунорегуляторные эффекты IL1RA.
Белки плазмы, такие как белки системы комплемента и другие медиаторы воспаления, также могут вносить вклад в патогенез цитокинового шторма. Эти растворимые белки распознают патогены, усиливают клеточный иммунный ответ и обеспечивают обратную связь в передаче сигналов цитокинов. Фактически, цитокины могут увеличивать продукцию белков комплемента, которые, в свою очередь, могут как усиливать, так и подавлять выработку цитокинов. Таким образом, система комплемента может быть очень эффективна в уничтожении микробов, но вместе с этим она способна вызвать ряд нежелательных побочных эффектов — в тех случаях, когда наблюдается ее чрезмерная активность. При цитокиновом шторме может наступать любопытное состояние — гипокомплементемия — возникающее в результате повышенной активности иммунных комплексов и характеризующееся снижением общей гемолитической активности комплемента [49]. В настоящее время ингибиторы системы комплемента изучаются в роли препаратов для лечения ряда проявлений цитокинового шторма.
Ятрогенный цитокиновый шторм
Терапия CAR-Т-клетками, сконструированными для распознавания и уничтожения CD19+ клеток лимфомы, может вызвать цитокиновый шторм с супрафизиологическими уровнями интерферона-γ и интерлейкина-6 [50]. Очевидно, что высокоактивные CAR-Т-клетки являются инициаторами цитокинового шторма. Несмотря на то, что некоторые ранние исследования предполагали, будто цитокины-драйверы высвобождаются CAR-Т-клетками и это, что приводит к положительной обратной связи активации Т-клеток и высвобождения воспалительных цитокинов [51], [51] недавние эксперименты на мышах продемонстрировали, что цитокины и факторы, опосредующие тяжесть цитокинового шторма, продуцируются не CAR-Т-клетками, а макрофагами, и могут быть блокированы ингибированием интерлейкина-6 и интерлейкина-1 [52–54]. Лизис опухоли, скорее всего, также вносит свой вклад в цитокиновый шторм через индукцию пироптоза в клетках-мишенях [55]. Поскольку блокада интерлейкина-6 очень эффективна при лечении симптомов и органной дисфункции у большинства пациентов, она, вероятно, тоже является определенным драйвером цитокинового шторма, вызванного терапией CAR-Т-клетками. Ингибирование глюкокортикоидов и интерлейкина-1 также может быть эффективным при лечении данного типа цитокинового шторма.
Цитокиновый шторм можно наблюдать и при использовании других иммунотерапевтических средств, задействующих Т-клетки, таких как блинатумомаб — биспецифическое антитело, которое связывается с CD19+ и CD3+ Т-клетками [56]. Подобно CAR-Т-клеткам, активированные Т-клетки инициируют гиперпродукцию цитокинов, а активация макрофагов распространяет индуцированный блинатумомабом цитокиновый шторм, который также реагирует на терапию антителами к интерлейкину-6 [36]. К сожалению, результаты исследований другого препарата, активирующего Т-клетки — суперагониста против CD28, TGN1412, — показывают, что быстрая активация большого количества Т-клеток может привести к мощейшему цитокиновому шторму уже в течение нескольких минут после инфузии препарата [57]. Однако цитокиновый шторм развивается не у всех пациентов, получавших CAR-Т-клетки или блинатумомаб, поэтому дополнительные факторы, такие как структура и дизайн CAR-Т-клеток [51], тяжесть болезни [58] и генетические особенности хозяина [59], вероятно, также будут играть роль. В недавнем исследовании CAR-терапии NK-клетками не было зарегистрировано случаев цитокинового шторма или даже сколько-нибудь значимого повышения уровня интерлейкина-6 [60] — возможно, из-за более низкой продукции интерлейкина-6 NK-клетками, чем Т-клетками, и различных перекрестных взаимодействий с миелоидными клетками. Дополнительные ятрогенные причины цитокинового шторма включают использование ритуксимаба, генную терапию, ингибиторов иммунных контрольных точек, операцию по шунтированию сердца [61] и трансплантацию аллогенных стволовых клеток, а также инвазию биологических агентов, таких как стафилококковый энтеротоксин группы B и Francisella tularensis.
Цитокиновый шторм, вызванный патогенами
Цитокиновый шторм также может быть и результатом естественных микробных инфекций. Несмотря на то, что данные об относительной частоте его возникновения ограничены, инфекции, скорее всего, являются наиболее частым триггером цитокинового шторма. Отличить выработку цитокинов, необходимую для борьбы с распространившейся по организму инфекцией, от чрезмерной продукции цитокинов бывает чрезвычайно сложно. Распространенные бактериальные инфекции, вызывающие сепсис, приводят к выработке различных цитокинов, которые могут вызывать лихорадку, клеточную гибель, коагулопатию и полиорганную дисфункцию. Побочные эффекты иммунного ответа в попытках избавиться от патогена могут быть гораздо более опасны, чем сам патоген. Некоторые бактерии, в том числе определенные виды стрептококков и золотистый стафилококк, могут продуцировать суперантигены, которые перекрестно связывают главный комплекс гистосовместимости и рецепторы Т-клеток, что приводит к поликлональной активации Т-клеток, продукции цитокинов и развитию синдрома токсического шока. Суперантигены являются наиболее мощными митогенами Т-клеток, и концентрация бактериального суперантигена менее 0,1 пг на миллилитр достаточна для неконтролируемой стимуляции Т-клеток, что приводит к лихорадке, токсическому шоку и смерти.
При ассоциированном с сепсисом цитокиновом шторме не совсем понятно, какие типы иммунных клеток и какие именно цитокины могут быть ответственны за развитие патологического гипервоспаления. Антибиотики — традиционная основа лечения такого состояния. Введение моноклональных антител, направленных на специфические цитокины, а также использование афереза или медицинских технологий для удаления цитокинов из системного кровотока, как правило, приводили к неутешительным результатам в клинических испытаниях [62]. Хотя длительное время лечения в данных исследованиях могло способствовать снижению его благоприятных эффектов, помимо специфически повышенных уровней цитокинов могут иметь значение и дополнительные параметры как организма хозяина, так и патогена. Например, повторный анализ исследования блокады интерлейкина-1β у пациентов с сепсисом выявил подгруппу людей с повышенным уровнем ферритина, которым, по-видимому, вышеописанное лечение помогало [63].
Распространенные вирусные инфекции также могут вызывать мощный цитокиновый шторм. У пациентов с гипервоспалительным ответом на микробную инвазию часто выявляются дефекты в обнаружении патогенов, нарушение эффекторных и регуляторных механизмов или процесса разрешения воспаления. Например, пациенты, у которых отсутствует функциональный перфорин, играющий ключевую роль в лечении инфекций и воспаления, во время активной фазы инфекции вирусом Эпштейна — Барр или цитомегаловирусом демонстрировали более длительную выработку CD8+ Т-клетками интерферона-γ и TNF, и у таких пациентов развивался HLH-ассоциированный цитокиновый шторм [64]. Экспериментальные модели предполагают, что у данных пациентов цитокиновый шторм происходит в результате нарушений процесса перфорин-опосредованного цитолиза, который приводит к длительному взаимодействию между лимфоцитами и антигенпрезентирующими клетками и дефектному клиренсу антиген-презентирующих дендритных клеток, что, в свою очередь, вызывает постоянную активацию и пролиферацию Т-клеток и макрофагов, гемофагоцитоз и нарушение аутокринной регуляции провоспалительных цитокинов [21, 65–67]. Более того, ретроспективный анализ данных пациентов, умерших от коагулопатий и гемофагоцитоза во время пандемии гриппа H1N1 в 2009 году, выявил мутации зародышевой линии, ранее связанные с HLH-ассоциированным цитокиновым штормом [30]. Таким образом, патоген инициирует, а активация Т-клеток развивает цитокиновый шторм у пациентов с генетической предрасположенностью. Терапия с использованием циклоспорина и моноклональных антител к рецептору интерлейкина-6 может быть эффективной при некоторых вирусных формах HLH-ассоциированного цитокинового шторма, что указывает на ключевую роль активации Т-клеток и интерлейкина-6.
Другой патоген-индуцированной формой цитокинового шторма служит мультицентрическая болезнь Каслмана, связанная с HHV-8. При этом заболевании неконтролируемая инфекция HHV-8 (также известным как герпесвирус саркомы Капоши) приводит к цитокиновому шторму, вызванному, главным образом, чрезмерной выработкой человеческого интерлейкина-6 и вирусного интерлейкина-6 плазмобластами, инфицированными HHV-8 [68]. Пациенты с мультицентрической болезнью Каслмана, ассоциированной с HHV-8, имеют ослабленный иммунитет в результате инфицирования вирусом иммунодефицита человека или генетических особенностей иммунной системы, что затрудняет борьбу с инфекцией HHV-8, которая является часто встречающейся среди населения в целом и обычно протекающей бессимптомно [69]. Недавнее исследование показало, что терапевтический эффект тоцилизумаба у пациентов с мультицентрической болезнью Каслмана, ассоциированной с HHV-8, был минимальным и непродолжительным — скорее всего, из-за передачи сигналов вирусного интерлейкина-6, которая не зависела от нейтрализованного рецептора интерлейкина-6 [70]. Как и в случае ассоциированного с вирусом Эпштейна — Барр HLH [71], ритуксимаб очень эффективен у пациентов с мультицентрической болезнью Кастлмана, связанной с HHV-8, поскольку истощение пула B-клеток устраняет первичный резервуар для HHV-8 [72]. Цитокиновый шторм способны вызывать и многие другие патогены, включая прочие вирусы герпеса, такие как вирус простого герпеса, и различные вирусы гриппа, такие как H5N1.
Таргетное лечение более проблематично для пациентов с вирусными инфекциями, чем с бактериальными, поскольку на сегодняшний день в арсенале клинициста меньше доступных противовирусных средств. Иногда применяются внутривенные инъекции иммуноглобулина и плазмы выздоравливающих пациентов с целью контроля патогена и обеспечения иммуномодуляции. При некоторых вирусных заболеваниях лечение пациентов провоспалительными цитокинами на ранних стадиях инфекции может помочь контролировать репликацию вируса до того, как проявятся пагубные последствия чрезмерного иммунного ответа [73].
Цитокиновый шторм в случае моногенных или аутоиммунных заболеваний
В редких случаях некоторые патогены могут вызывать цитокиновый шторм у пациентов с моногенными нарушениями; в других же цитокиновый шторм имеет аутоиммунную причину, является паранеопластическим синдромом, а то и вовсе идиопатичен. У пациентов с первичным HLH различные аутосомно-рецессивные моногенные аномалии гранулярно-опосредованных цитотоксических реакций приводят к цитокиновому шторму. Среди таких повреждений — мутации, встречающиеся в PRF1, UNC13D, STXBP1, RAB27A, STX11, SH2D1A, XIAP и NLRC4 [23]. У пациентов со вторичным HLH вирусные, аутоиммунные или неопластические нарушения тоже могут вызывать цитокиновый шторм, и у таких людей часто наблюдаются гетерозиготные полиморфизмы в тех же генах, которые изменены в случае с первичным HLH [65, 74]. Повышенные уровни интерферона-γ, TNF, интерлейкина-1, -4, -6, -8, -10, CXCL9, CXCL10 и интерлейкина-18 часто связаны с HLH. Терапия антителами к интерферону-γ с использованием эмапалумаба недавно была одобрена для лечения первичного HLH в качестве своег рода «моста» к аллогенной трансплантации стволовых клеток, которая, как сообщают исследователи, демонстрирует хорошие терапевтические результаты.
Благоприятные эффекты глюкокортикоидов, циклоспорина, антител к интерлейкину-1, ингибиторов JAK1 и JAK2, антител против интерлейкина-6 и цитотоксической химиотерапии у некоторых пациентов с первичным или вторичным HLH предполагают, что те звенья, на которые нацелены эти агенты, являются ключевыми в патогенезе цитокинового шторма. Циклофосфамид и этопозид, которые обладают мощной цитотоксичностью, но особенно эффективны при уничтожении активированных CD8+ Т-клеток, часто эффективны у пациентов как с первичным, так и с вторичным HLH (включая синдром активации макрофагов) [75]. Этопозид также воздействует на макрофаги, в том числе участвующие в регуляции воспалительных процессов, что может быть важным в патогенезе цитокинового шторма. Сообщалось об общей абляции Т-клеток и В-клеток алемтузумабом и абляции Т-клеток с помощью антитимоцитарного глобулина; абляция, как предполагается на сегодняшний день, работает, избирательно уничтожая патогенные CD8+ Т-клетки среди других типов клеток [76]. Неаблятивное ингибирование Т-клеток циклоспорином также может демонстрировать неплохой терапевтический эффект [77].
Аутовоспалительные заболевания характеризуются воспалением без видимых причин и цитокиновым штормом без признаков инфекции или аутоиммунитета. У больных есть мутации зародышевой линии в генах, регулирующих врожденную иммунную систему и активацию инфламмасом. Некоторые генетические нарушения связаны с изменениями в регуляции врожденной иммунной системы. Среди них — семейная средиземноморская лихорадка (MEFV), периодический синдром, ассоциированный с рецептором TNF (TNFRSF1A), гипериммуноглобулинемия D с синдромом периодической лихорадки (MVK), семейный холодовой аутовоспалительный синдром (NLRP3), синдром Макла-Уэльса (NLRP3), мультисистемное воспалительное заболевание с неонатальным началом (NLRP3), дефицит ADA2 (CECR1), X-сцепленное лимфопролиферативное расстройство 2-го типа (XIAP), синдром Такенучи — Косаки (CDC42) и синдром Вискотта — Олдрича (CDC42). Хотя у всех пациентов с вышеперечисленными заболеваниями наблюдались явления периодической лихорадки, лишь у небольшой их части присутствовал цитокиновый шторм. Учитывая первичные генетические дефекты и доступные эффективные методы лечения, эффекторные клетки врожденной иммунной системы, скорее всего, являются основными драйверами цитокинового шторма, а TNF, интерлейкин-1, -18 или комбинация этих цитокинов, вероятно, управляют его патогенезом. Пациенты с синдромами генетически обусловленного иммунодефицита, такими как, например, хроническая гранулематозная болезнь и синдром чрезмерной функции STAT1, могут, как это ни парадоксально, демонстрировать явления цитокинового шторма при обширных инфекциях [78].
Идиопатическая мультицентрическая болезнь Каслмана — еще одно заболевание с синдромом цитокинового шторма, которое сходно с мультицентрической болезнью Каслмана, связанной с HHV-8, но причина идиопатического варианта, как следует из названия, остается неизвестной. Пациенты с подтипом болезни Каслмана, включающим тромбоцитопению, анасарку, лихорадку, ретикулиновый фиброз и органемегалию (TAFRO), как правило, имеют наиболее тяжелые проявления цитокинового шторма [79]. Несмотря на то, что причина этого явления остается неизвестной, интерлейкин-6 является движущей силой патогенеза у значительной части пациентов. В результате тоцилизумаб, нацеленный на рецептор интерлейкина-6, и силтуксимаб, нацеленный непосредственно на сам интерлейкин-6, были разработаны и одобрены регулирующими органами в Японии (тоцилизумаб), в США и десятках других стран (силтуксимаб) для лечения идиопатической мультицентрической болезни Каслмана. Как силтуксимаб, так и тоцилизумаб устраняют обострения болезни и поддерживают ремиссию примерно у одной трети — половины пациентов [80]. Однако у некоторых пациентов с низким уровнем циркулирующего интерлейкина-6 есть терапевтический ответ на блокаду интерлейкина-6, а у некоторых пациентов с высокими уровнями системного интерлейкина-6 такого ответа нет. Недавно была идентифицирована и проверена панель из семи белков, которая позволяет предсказать, у каких пациентов с идиопатической мультицентрической болезнью Каслмана с наибольшей вероятностью обнаружится эффект от терапии силтуксимабом
(https://ashpublications.org/blood/article/132/Supplement%201/3716/265269/Serum-Proteomics-Reveals-Distinct-Subtypes?searchresult=1).
Пациентов с идиопатической мультицентрической болезнью Каслмана, у которых наблюдается прогрессирующая органная дисфункция и которые не отвечают на терапию, нацеленную на интерлейкин-6, часто лечат комбинированной цитотоксической химиотерапией для неспецифического устранения гипервоспалительных клеток [81]. Другие сывороточные цитокины и клеточные пути передачи сигналов, которые можно рассматривать для терапевтического воздействия, включают CXCL13, CXCL10 (интерферон-индуцируемый белок 10 [IP-10]), VEGF-A, [82] интерферон типа I, [83] комплекс mTOR1 (mTORC1) [84], и JAK — STAT3. Эти данные привели к внедрению в клиническую практику сиролимуса, ингибитора mTORC1, у пациентов с идиопатической многоцентровой болезнью Каслмана, которые не отвечают на терапию против интерлейкина-6 [85]. Терапия сиролимусом оценивается в текущем клиническом исследовании с участием пациентов с активным заболеванием, у которых еще не развился молниеносный цитокиновый шторм (ClinicalTrials.gov, NCT03933904).
Цитокиновый шторм, связанный с COVID-19
COVID-19 — заболевание, возникающее в результате инфекции SARS-CoV-2, — характеризуется гетерогенными симптомами, варьирующимися от легкого недомогания до опасной для жизни пневмонии, цитокинового шторма и полиорганной недостаточности. Цитокиновый шторм также отмечался у пациентов с тяжелым острым респираторным синдромом и ассоциировался с плохим клиническим прогнозом [86]. Хотя механизмы повреждения легких и полиорганной недостаточности при COVID-19 все еще исследуются, 14 сообщений о гемофагоцитозе и повышенных уровнях цитокинов, а также о положительных эффектах применения иммунодепрессантов у пациентов, особенно тех, которые находятся в наиболее тяжелом состоянии, позволяют предположить, что цитокиновый шторм может способствовать патогенезу этого заболевания [87, 88].
Среди цитокинов, уровни которых повышены в сыворотке крови у пациентов с цитокиновым штормом, ассоциированным с COVID-19, можно назвать интерлейкин-1β, интерлейкин-6, IP-10, TNF, интерферон-γ, воспалительный белок макрофагов (MIP) 1α и 1β и VEGF [89, 90]. Более высокие уровни интерлейкина-6 оказались тесно связаны с худшей выживаемостью [91]. Относительная частота циркуляции активированных CD4+ и CD8+ Т-клеток и плазмобластов при COVID-19 также увеличивается [92]. В дополнение к повышенным уровням цитокинов в системном кровотоке и активированным иммунным клеткам, при COVID-19 также наблюдаются некоторые клинические и лабораторные аномалии, такие как повышенный уровень СРБ и d-димера, гипоальбуминемия, почечная дисфункция и кровоизлияния — как и при цитокиновом шторме. Было обнаружено, что результаты лабораторных тестов, отражающие гипервоспаление и повреждение тканей, предсказывают более тяжёлое течение COVID-19 [93].
Несмотря на то, что иммунологическая дисрегуляция наблюдалась в тяжелых случаях COVID-19 [26], неизвестно, лежит ли в основе таких случаев иммунная гиперактивность или неспособность разрешить воспалительный ответ из-за продолжающейся репликации вируса или же иммунной дисрегуляции. Корреляция между вирусной нагрузкой в носоглотке и уровнями цитокинов (например, интерферона-α, интерферона-γ и TNF), а также снижение вирусной нагрузки в умеренных, но не тяжелых случаях, предполагает, что иммунный ответ прямо пропорционально связан с тяжестью вирусной инфекции и степенью вирусной нагрузки [26]. С другой стороны, открытие врожденных дефектов иммунной системы и наличие аутоантител против интерферонов I типа в наиболее тяжелых случаях COVID-19 предполагает, что неадекватный ответ на вирусную инфекцию может вносить свою лепту в развитие тяжелой формы заболевания у некоторых пациентов [94, 95]. Иммунные ответы хозяина и связанные с иммунитетом симптомы чрезвычайно различаются у бессимптомных пациентов (которые демонстрируют эффективный контроль над SARS-CoV-2) и пациентами с тяжелым течением COVID-19 (которые не могут контролировать вирус). Это дает повод предполагать, что нарушение иммунной регуляции в организме человека тоже влияет на патогенез. Другой предполагаемый механизм включает развитие аутоиммунитета из-за молекулярного сходства между SARS-CoV-2 и аутоантигеном. Эти механизмы могут быть задействованы в определенных подгруппах пациентов, таких как дети с постинфекционным мультисистемным воспалительным синдромом — состоянием, которое, по-видимому, улучшается с помощью иммуномодулирующей терапии, такой как внутривенное введение иммуноглобулина, глюкокортикоидов, а также терапии против интерлейкина-1 и интерлейкина-6. Пациенты с мультисистемным воспалительным синдромом очень четко подходят под определение цитокинового шторма, поскольку SARS-CoV-2 в организме больше не присутствует; однако остается непонятным, является цитокиновый шторм драйвером COVID-19 или же вторичным по отношению к инфекции процессом. Кроме того, теперь ясно, что пациенты с инфекцией SARS-CoV-2 могут быть как бессимптомными, так и демонстрировать острый COVID-19 с различной степенью тяжести. Возможно также хроническое течение COVID-19 или же переход в мультисистемный воспалительный синдром. Критический вопрос касается факторов, которые вносят вклад в тяжелый фенотип, подобный цитокиновому шторму, который наблюдается у небольшой части пациентов. Коморбидные состояния, такие как гипертония, диабет и ожирение, связаны с более тяжелыми случаями COVID-19 — возможно, из-за ранее существовавшего хронического воспалительного состояния или более низкого порога развития дисфункции органов.
Следует отметить несколько важных различий в терапии цитокинового шторма, ассоциированного с COVID-19 и цитокинового шторма при других заболевнаиях. Во-первых, при инфекции SARS-CoV-2 он может потребовать лечения, отличного от лечения цитокинового шторма, возникшего по другим причинам. Цитокины могут быть как ключевым компонентом цитокинового шторма, так и важным фактором ответа на внедрение патогена. Таким образом, блокирование передачи сигналов цитокинов может фактически ухудшить течение SARS-CoV-2, увеличить риск вторичных инфекций и привести к худшим исходам, как это было с вирусом гриппа [96]. Поскольку интерлейкин-6 и другие цитокины потенциально имеют решающее значение как для адекватного ответа на SARS-CoV-2, так и для цитокинового шторма, и особенно важно, чтобы для лечения COVID-19 были отобраны нужные подгруппы пациентов в нужное время. Несмотря на ряд сообщений, два крупных рандомизированных контролируемых испытания терапии антителами против рецептора интерлейкина-6 не показали улучшения выживаемости у госпитализированных пациентов с COVID-19 [97, 98].
Во-вторых, первичный очаг инфекции, скорее всего, вносит свой вклад в различия в иммунных реакциях и механизмах, лежащих в основе цитокинового шторма, что имеет значение для определения тактики терапии. Например, избирательное устранение первичного вирусного резервуара имеет смысл у пациентов с мультицентрической болезнью Каслмана, связанной с HHV-8, но невозможно у пациентов с COVID-19.
В-третьих, лимфопения нечасто наблюдается при cвязанных с цитокиновым штормом патологиях, но это состояние непременного говорит о тяжелом течении COVID-19. В настоящее время неясно, вызвана ли лимфопения, наблюдаемая при COVID-19, инфильтрацией тканей или же она является последствием разрушения лимфоцитов.
В-четвертых, проблемы со свертываемостью крови могут возникать при любом варианте цитокинового шторма, но тромбоэмболические явления, по-видимому, чаще встречаются при цитокиновом шторме, ассоциированном с COVID-19 [99]. Наконец, хотя и цитокиновые панели не измерялись одновременно на одной и той же платформе для цитокинового шторма, ассоциированного с COVID-19, и других вариантов цитокинового шторма, предварительные результаты предполагают, что циркулирующие уровни некоторых цитокинов, таких как интерлейкин-6, а также других воспалительных маркеров, таких как ферритин, при COVID-19 повышены в меньшей степени, чем при других видах цитокинового шторма [26]. Уровни медиаторов воспаления в легочной ткани во время заражения SARS-CoV-2 пока остаются неизвестными.
Несмотря на множество остающихся неразрешенными вопросов, недавнее рандомизированное исследование показало, что дексаметазон снижает смертность при наиболее тяжелых случаях COVID-19, характеризующихся повышенным уровнем СРБ и высокой потребностью в дополнительном кислороде, и может ухудшать исходы в более легких случаях [88]. Мета-анализ семи рандомизированных исследований показал, что 28-дневная смертность от любых причин у тяжелобольных пациентов с COVID-19 была ниже среди тех, кто лечился глюкокортикоидами, чем среди тех, кто получал общепринятую терапию или плацебо [100]. Наблюдательное исследование, показывающее, что пациенты с COVID-19 демонстрировали хороший ответ на глюкокортикоиды при высоком уровне СРБ, но плохой ответ при низком уровне, вполне согласуется с этими результатами [101]. Дальнейшие аргументы в пользу данных наблюдений исходят из сообщений о применении антагонистов, нацеленных на интерлейкин-1, гранулоцитарно-макрофагальный колониестимулирующий фактор и JAK1 и JAK2 у пациентов с COVID-19 [102–105]. Аналогичным образом, наблюдение, что провоспалительные агенты, такие как ингаляционный интерферон-β, демонстрируют положительный эффект, если их вводить на ранней стадии заболевания, согласуется с моделью, в которой иммуностимуляция, усиливающая противовирусную активность, полезна на ранней стадии (и, вероятно, вредна на поздних этапах), тогда как иммуносупрессия полезна на поздних этапах и вредна на ранних. Как и в случае с дексаметазоном, время лечения и выбор подгрупп пациентов, включенных в исследования, скорее всего, также влиял на результаты.
Несмотря на то, что о роли иммунной дисрегуляции и цитокиновом шторме, ассоциированном с COVID-19, известно далеко не все, в настоящее время тестируются сотни иммуномодулирующих препаратов [102]. Многие из них использовались при других видах цитокинового шторма. Канакинумаб, моноклональное антитело против интерлейкина-1β, и анакинра изучаются на предмет терапии ОРДС, индуцированного COVID-19. Акалабрутиниб, селективный ингибитор тирозинкиназы Брутона, которая регулирует передачу сигналов и активацию В-клеток и макрофагов, может иметь многообещающее значение для ослабления гипервоспалительного ответа при COVID-19 [106]. Ингибиторы киназ JAK1 и JAK2, одобренные для терапии ряда аутоиммунных и неопластических состояний, могут подавлять передачу нижестоящих сигналов от интерферона I типа, интерлейкина-6 (и других рецепторов семейства gp130), интерферона-γ и интерлейкина-2 [107]. Подобно терапии антителами к интерлейкину-6, ингибирование тирозинкиназы Брутона и JAK может оказаться бесполезным или даже опасным, если его вводить слишком рано, когда иммунный ответ на SARS-CoV-2 имеет решающее значение для контроля репликации и клиренса вируса.
Терапия
Общие принципы лечения цитокинового шторма включают поддерживающую терапию для сохранения функции органов и систем, контроль основного заболевания и устранение триггеров аномальной активации иммунной системы, а также направленную иммуномодуляцию или неспецифическую иммуносупрессию для ограничения побочных эффектов активированной иммунной системы. Как отмечалось в этом обзоре, немало препаратов демонстрируют эффективность при множестве проявлений цитокинового шторма, и могут быть еще более эффективны при различных патологиях, которые пока не изучены.
Учитывая растущее число новых терапевтических средств, нацеленных на различные звенья иммунной системы, и современные возможности для исследования биологических механизмов заболеваний, дальнейшие исследования должны быть сосредоточены на идентификации лекарств, которые могут использоваться для терапии цитокинового шторма, и точной диагностике для выбора правильных лекарств для правильных пациентов, вне зависимости от основного состояния [108, 109]. Исследование с участием пациентов с системным ювенильным идиопатическим артритом выявило подгруппы людей с цитокиновым профилем, в которых преобладали интерлейкин-6 и интерлейкин-18, что делает доступными новые терапевтические подходы [110]. Аналогичным образом, недавно было показано, что биомаркеры эффективно и достоверно предсказывают, какие пациенты с болезнью Стилла, начавшейся во взрослом состоянии, будут демонстрировать ответ на терапию анакинрой или тоцилизумабом [111]. Прогресс, достигнутый в онкологии, предполагает, что аналогичные усилия, прилагаемые для изучения заболеваний, сопровождающихся цитокиновым штормом, необходимы для определения конкретных терапевтических мишеней и признаков реакции на определенные лекарства, граничащих с патологией. Сигнальный путь JAK является интересной и перспективной мишенью в цитокиновом шторме, поскольку на разные пары цитокинов и их рецепторов можно воздействовать направленно и одновременно, что обеспечит подход, который может быть эффективным при множественных заболеваниях, управляемых разнообразными цитокинами. При контроле за цитокиновым штормом важно учитывать несколько факторов. Нейтрализация определенного цитокина, уровень которого повышен в системном кровотоке, с помощью существующего агента (антитела к интерлейкину-6, TNF ,интерферону-γ или интерлейкину-1β) не всегда будет иметь смысл, а блокада цитокинов с низким или нормальным уровнем циркуляции может быть эффективной, если этот цитокин является ключевым компонентом гипервоспалительного ответа или если его уровень потенциально повышен в органах и тканях. Кроме того, различные методы лечения, упомянутые в этом обзоре, имеют отличительные профили побочного действия и рисков. Все таргетные агенты имеют специфические побочные эффекты, а комбинированная терапия имеет больше потенциальных рисков, чем монотерапия. Кроме того, патологическое гипервоспаление само по себе является иммунодефицитным состоянием, которое может подвергать пациентов риску инфекций, а иммунодепрессанты, скорее всего, еще больше будут увеличивать этот риск. В наш век профилирования цитокинов и персонифицированной медицины пациенты должны находиться под тщательным наблюдением, получать соответствующую профилактику при эмпирическом лечении, и всегда следует проводить рандомизированные контролируемые испытания для оценки эффективности и безопасности.
Прогресс в исследованиях и лечении цитокинового шторма потребует объединения образцов для «омических» исследований и сотрудничества между экспертами в разных облатях. Как только будет достигнут достаточный научный прогресс в направлении персонифицированной терапии цитокинового шторма на основе биомаркеров, потребуются надежные, быстрые и доступные анализы для измерения растворимых медиаторов воспаления в плазме и тканях.
Резюме
Небольшое вторичное нарушение функции органов во время воспалительной реакции является эволюционно обоснованным, если оно позволяет организму победить инфекцию и выжить. Если воспалительная реакция вызывает чрезмерную дисфункцию органов, что ставит под угрозу выживание и репродуктивную пригодность организма хозяина (при отсутствии искусственной вентиляции легких и диализа), то это необходимо признать патологическим состоянием. Существуют обширные регуляторные механизмы, которые модулируют иммунный ответ и предотвращают цитокиновый шторм. Тем не менее, данное расстройство все еще может возникать из-за ятрогенных причин, патогенов, развития онкологического процесса, аутоиммунных реакций и аутовоспалительных механизмов. Для адекватной терапии необходимо различать защитные воспалительные реакции и патологический цитокиновый шторм, что на практике является довольно сложной задачей. Не существует единого определения цитокинового шторма, и есть много разногласий по поводу того, каким должно быть данное определение и следует ли включать определенные состояния, такие как COVID-19, в спектр заболеваний, сопровождающихся цитокиновым штормом. Авторы обзора предлагают единое определение цитокинового шторма, основанное на следующих критериях: повышенные уровни циркулирующих цитокинов, острые системные воспалительные симптомы и дисфункция вторичных органов выше той степени, которая может быть отнесена к нормальной реакции на патоген, если он присутствует. Терапевтические подходы к цитокиновому шторму, связанному с идиопатической мультицентрической болезнью Каслмана, HLH или CAR- Т-клеточной терапией, смогли обратить ранее смертельные состояния в транзиторные. Учитывая достижения в области многомерного профилирования и терапевтической модуляции иммунной системы, а также согласованные усилия по исследованию цитокинового шторма, можно увидеть дальнейшее улучшение результатов в понимании его патогенеза и терапии.